Artificial Intelligence
Explore the latest in machine learning, deep learning, natural language processing, and AI applications
Navigate through content by publication date
Thu, Feb 19
42 items found
From Growing to Looping: A Unified View of Iterative Computation in LLMs
Looping, reusing a block of layers across depth, and depth growing, training shallow-to-deep models by duplicating middle layers, have both been linked to stronger reasoning, but their relationship remains unclear. We provide a mechanistic unification: looped and depth-grown models exhibit convergent depth-wise signatures, including increased reliance on late layers and recurring patterns aligned with the looped or grown block. These shared signatures support the view that their gains stem from a common form of iterative computation. Building on this connection, we show that the two techniques are adaptable and composable: applying inference-time looping to the middle blocks of a depth-grown model improves accuracy on some reasoning primitives by up to $2\times$, despite the model never being trained to loop. Both approaches also adapt better than the baseline when given more in-context examples or additional supervised fine-tuning data. Additionally, depth-grown models achieve the largest reasoning gains when using higher-quality, math-heavy cooldown mixtures, which can be further boosted by adapting a middle block to loop. Overall, our results position depth growth and looping as complementary, practical methods for inducing and scaling iterative computation to improve reasoning.
Optimizing Soft Prompt Tuning via Structural Evolution
Soft prompt tuning leverages continuous embeddings to capture task-specific information in large pre-trained language models (LLMs), achieving competitive performance in few-shot settings. However, soft prompts rely on high-dimensional, implicit representations and lack explicit semantics and traceable training behaviors, which limits their interpretability. To address this limitation, we propose a soft prompt tuning optimization method based on topological morphological evolution. Specifically, we employ persistent homology from topological data analysis (TDA) to quantify the structural representations of soft prompts in continuous parameter space and their training process evolution. Quantitative analysis shows that topologically stable and compact soft prompts achieve better downstream performance. Based on this empirical observation, we construct a loss function for optimizing soft prompt tuning, termed Topological Soft Prompt Loss (TSLoss). TSLoss guides the model to learn structurally stable adaptations by quantifying inter-parameter connectivity and redundancy. Extensive experiments show that training with TSLoss accelerates convergence and improves tuning performance, providing an interpretable method to understand and optimize soft prompt tuning from structural and topological perspectives.
Creating a digital poet
Can a machine write good poetry? Any positive answer raises fundamental questions about the nature and value of art. We report a seven-month poetry workshop in which a large language model was shaped into a digital poet through iterative in-context expert feedback, without retraining. Across sessions, the model developed a distinctive style and a coherent corpus, supported by quantitative and qualitative analyses, and it produced a pen name and author image. In a blinded authorship test with 50 humanities students and graduates (three AI poems and three poems by well-known poets each), judgments were at chance: human poems were labeled human 54% of the time and AI poems 52%, with 95% confidence intervals including 50%. After the workshop, a commercial publisher released a poetry collection authored by the model. These results show that workshop-style prompting can support long-horizon creative shaping and renew debates on creativity and authorship.
ColBERT-Zero: To Pre-train Or Not To Pre-train ColBERT models
Current state-of-the-art multi-vector models are obtained through a small Knowledge Distillation (KD) training step on top of strong single-vector models, leveraging the large-scale pre-training of these models. In this paper, we study the pre-training of multi-vector models and show that large-scale multi-vector pre-training yields much stronger multi-vector models. Notably, a fully ColBERT-pre-trained model, ColBERT-Zero, trained only on public data, outperforms GTE-ModernColBERT as well as its base model, GTE-ModernBERT, which leverages closed and much stronger data, setting new state-of-the-art for model this size. We also find that, although performing only a small KD step is not enough to achieve results close to full pre-training, adding a supervised step beforehand allows to achieve much closer performance while skipping the most costly unsupervised phase. Finally, we find that aligning the fine-tuning and pre-training setups is crucial when repurposing existing models. To enable exploration of our results, we release various checkpoints as well as code used to train them.
A Contrastive Learning Framework Empowered by Attention-based Feature Adaptation for Street-View Image Classification
Street-view image attribute classification is a vital downstream task of image classification, enabling applications such as autonomous driving, urban analytics, and high-definition map construction. It remains computationally demanding whether training from scratch, initialising from pre-trained weights, or fine-tuning large models. Although pre-trained vision-language models such as CLIP offer rich image representations, existing adaptation or fine-tuning methods often rely on their global image embeddings, limiting their ability to capture fine-grained, localised attributes essential in complex, cluttered street scenes. To address this, we propose CLIP-MHAdapter, a variant of the current lightweight CLIP adaptation paradigm that appends a bottleneck MLP equipped with multi-head self-attention operating on patch tokens to model inter-patch dependencies. With approximately 1.4 million trainable parameters, CLIP-MHAdapter achieves superior or competitive accuracy across eight attribute classification tasks on the Global StreetScapes dataset, attaining new state-of-the-art results while maintaining low computational cost. The code is available at https://github.com/SpaceTimeLab/CLIP-MHAdapter.
Retrieval-Augmented Foundation Models for Matched Molecular Pair Transformations to Recapitulate Medicinal Chemistry Intuition
Matched molecular pairs (MMPs) capture the local chemical edits that medicinal chemists routinely use to design analogs, but existing ML approaches either operate at the whole-molecule level with limited edit controllability or learn MMP-style edits from restricted settings and small models. We propose a variable-to-variable formulation of analog generation and train a foundation model on large-scale MMP transformations (MMPTs) to generate diverse variables conditioned on an input variable. To enable practical control, we develop prompting mechanisms that let the users specify preferred transformation patterns during generation. We further introduce MMPT-RAG, a retrieval-augmented framework that uses external reference analogs as contextual guidance to steer generation and generalize from project-specific series. Experiments on general chemical corpora and patent-specific datasets demonstrate improved diversity, novelty, and controllability, and show that our method recovers realistic analog structures in practical discovery scenarios.
Are Object-Centric Representations Better At Compositional Generalization?
Compositional generalization, the ability to reason about novel combinations of familiar concepts, is fundamental to human cognition and a critical challenge for machine learning. Object-centric (OC) representations, which encode a scene as a set of objects, are often argued to support such generalization, but systematic evidence in visually rich settings is limited. We introduce a Visual Question Answering benchmark across three controlled visual worlds (CLEVRTex, Super-CLEVR, and MOVi-C) to measure how well vision encoders, with and without object-centric biases, generalize to unseen combinations of object properties. To ensure a fair and comprehensive comparison, we carefully account for training data diversity, sample size, representation size, downstream model capacity, and compute. We use DINOv2 and SigLIP2, two widely used vision encoders, as the foundation models and their OC counterparts. Our key findings reveal that (1) OC approaches are superior in harder compositional generalization settings; (2) original dense representations surpass OC only on easier settings and typically require substantially more downstream compute; and (3) OC models are more sample efficient, achieving stronger generalization with fewer images, whereas dense encoders catch up or surpass them only with sufficient data and diversity. Overall, object-centric representations offer stronger compositional generalization when any one of dataset size, training data diversity, or downstream compute is constrained.
Protecting the Undeleted in Machine Unlearning
Machine unlearning aims to remove specific data points from a trained model, often striving to emulate "perfect retraining", i.e., producing the model that would have been obtained had the deleted data never been included. We demonstrate that this approach, and security definitions that enable it, carry significant privacy risks for the remaining (undeleted) data points. We present a reconstruction attack showing that for certain tasks, which can be computed securely without deletions, a mechanism adhering to perfect retraining allows an adversary controlling merely $ω(1)$ data points to reconstruct almost the entire dataset merely by issuing deletion requests. We survey existing definitions for machine unlearning, showing they are either susceptible to such attacks or too restrictive to support basic functionalities like exact summation. To address this problem, we propose a new security definition that specifically safeguards undeleted data against leakage caused by the deletion of other points. We show that our definition permits several essential functionalities, such as bulletin boards, summations, and statistical learning.
Who can we trust? LLM-as-a-jury for Comparative Assessment
Large language models (LLMs) are increasingly applied as automatic evaluators for natural language generation assessment often using pairwise comparative judgements. Existing approaches typically rely on single judges or aggregate multiple judges assuming equal reliability. In practice, LLM judges vary substantially in performance across tasks and aspects, and their judgment probabilities may be biased and inconsistent. Furthermore, human-labelled supervision for judge calibration may be unavailable. We first empirically demonstrate that inconsistencies in LLM comparison probabilities exist and show that it limits the effectiveness of direct probability-based ranking. To address this, we study the LLM-as-a-jury setting and propose BT-sigma, a judge-aware extension of the Bradley-Terry model that introduces a discriminator parameter for each judge to jointly infer item rankings and judge reliability from pairwise comparisons alone. Experiments on benchmark NLG evaluation datasets show that BT-sigma consistently outperforms averaging-based aggregation methods, and that the learned discriminator strongly correlates with independent measures of the cycle consistency of LLM judgments. Further analysis reveals that BT-sigma can be interpreted as an unsupervised calibration mechanism that improves aggregation by modelling judge reliability.
Align Once, Benefit Multilingually: Enforcing Multilingual Consistency for LLM Safety Alignment
The widespread deployment of large language models (LLMs) across linguistic communities necessitates reliable multilingual safety alignment. However, recent efforts to extend alignment to other languages often require substantial resources, either through large-scale, high-quality supervision in the target language or through pairwise alignment with high-resource languages, which limits scalability. In this work, we propose a resource-efficient method for improving multilingual safety alignment. We introduce a plug-and-play Multi-Lingual Consistency (MLC) loss that can be integrated into existing monolingual alignment pipelines. By improving collinearity between multilingual representation vectors, our method encourages directional consistency at the multilingual semantic level in a single update. This allows simultaneous alignment across multiple languages using only multilingual prompt variants without requiring additional response-level supervision in low-resource languages. We validate the proposed method across different model architectures and alignment paradigms, and demonstrate its effectiveness in enhancing multilingual safety with limited impact on general model utility. Further evaluation across languages and tasks indicates improved cross-lingual generalization, suggesting the proposed approach as a practical solution for multilingual consistency alignment under limited supervision.
Fundamentals of Reinforcement Learning | Free Reinforcement Learning Course Module 1
#reinforcementlearning #freecourse Welcome to module 1 of our free reinforcement learning course, from neuralnet.ai In this module you will learn the essential components of a reinforcement learning system. What roles do the environment, reward, and agent play in designing effective reinforcement learning systems? We'll also cover the differences between model free learning, and algorithms that require a model of the environment. If you're a reader rather than a consumer of video, please
Google DeepMind wants to know if chatbots are just virtue signaling
Google DeepMind is calling for the moral behavior of large language models—such as what they do when called on to act as companions, therapists, medical advisors, and so on—to be scrutinized with the same kind of rigor as their ability to code or do math. As LLMs improve, people are asking them to play more…
Export Your ML Model in ONNX Format
When building machine learning models, training is only half the journey.
LLM Embeddings vs TF-IDF vs Bag-of-Words: Which Works Better in Scikit-learn?
Machine learning models built with frameworks like scikit-learn can accommodate unstructured data like text, as long as this raw text is converted into a numerical representation that is understandable by algorithms, models, and machines in a broader sense.
Agentic AI for Modern Deep Learning Experimentation
Stop babysitting training runs. Start shipping research. Autonomous experiment management built for/by deep learning engineers. The post Agentic AI for Modern Deep Learning Experimentation appeared first on Towards Data Science.