🧠

Artificial Intelligence

Explore the latest in machine learning, deep learning, natural language processing, and AI applications

3538
Total Items
2111
Papers
134
Videos
7
Books
1093
Blogs
149
News
29
Podcasts
Browsing by date

Navigate through content by publication date

Sat, Nov 15

46 items found

1 of 68
💬 discussion

Senators announce bill that would ban AI chatbot companions for minors

Senators announce bill that would ban AI chatbot companions for minors

AI intermediate Artificial Intelligence
By: F0urLeafCl0ver
Source: Reddit Nov 15, 2025
0.0
1 min read
0
Quality
📄 paper

Computing the Formal and Institutional Boundaries of Contemporary Genre and Literary Fiction

Though the concept of genre has been a subject of discussion for millennia, the relatively recent emergence of genre fiction has added a new layer to this ongoing conversation. While more traditional perspectives on genre have emphasized form, contemporary scholarship has invoked both formal and institutional characteristics in its taxonomy of genre, genre fiction, and literary fiction. This project uses computational methods to explore the soundness of genre as a formal designation as opposed to an institutional one. Pulling from Andrew Piper's CONLIT dataset of Contemporary Literature, we assemble a corpus of literary and genre fiction, with the latter category containing romance, mystery, and science fiction novels. We use Welch's ANOVA to compare the distribution of narrative features according to author gender within each genre and within genre versus literary fiction. Then, we use logistic regression to model the effect that each feature has on literary classification and to measure how author gender moderates these effects. Finally, we analyze stylistic and semantic vector representations of our genre categories to understand the importance of form and content in literary classification. This project finds statistically significant formal markers of each literary category and illustrates how female authorship narrows and blurs the target for achieving literary status.

AI advanced Natural Language Processing
By: Natasha Johnson
Source: arXiv Nov 13, 2025
0.0
10 min read
0
Quality
📄 paper

URaG: Unified Retrieval and Generation in Multimodal LLMs for Efficient Long Document Understanding

Recent multimodal large language models (MLLMs) still struggle with long document understanding due to two fundamental challenges: information interference from abundant irrelevant content, and the quadratic computational cost of Transformer-based architectures. Existing approaches primarily fall into two categories: token compression, which sacrifices fine-grained details; and introducing external retrievers, which increase system complexity and prevent end-to-end optimization. To address these issues, we conduct an in-depth analysis and observe that MLLMs exhibit a human-like coarse-to-fine reasoning pattern: early Transformer layers attend broadly across the document, while deeper layers focus on relevant evidence pages. Motivated by this insight, we posit that the inherent evidence localization capabilities of MLLMs can be explicitly leveraged to perform retrieval during the reasoning process, facilitating efficient long document understanding. To this end, we propose URaG, a simple-yet-effective framework that Unifies Retrieval and Generation within a single MLLM. URaG introduces a lightweight cross-modal retrieval module that converts the early Transformer layers into an efficient evidence selector, identifying and preserving the most relevant pages while discarding irrelevant content. This design enables the deeper layers to concentrate computational resources on pertinent information, improving both accuracy and efficiency. Extensive experiments demonstrate that URaG achieves state-of-the-art performance while reducing computational overhead by 44-56%. The code is available at https://github.com/shi-yx/URaG.

AI advanced Natural Language Processing
By: Yongxin Shi, Jiapeng Wang, Zeyu Shan +3 more
Source: arXiv Nov 13, 2025
0.0
10 min read
0
Quality
📄 paper

DESS: DeBERTa Enhanced Syntactic-Semantic Aspect Sentiment Triplet Extraction

Fine-grained sentiment analysis faces ongoing challenges in Aspect Sentiment Triple Extraction (ASTE), particularly in accurately capturing the relationships between aspects, opinions, and sentiment polarities. While researchers have made progress using BERT and Graph Neural Networks, the full potential of advanced language models in understanding complex language patterns remains unexplored. We introduce DESS, a new approach that builds upon previous work by integrating DeBERTa's enhanced attention mechanism to better understand context and relationships in text. Our framework maintains a dual-channel structure, where DeBERTa works alongside an LSTM channel to process both meaning and grammatical patterns in text. We have carefully refined how these components work together, paying special attention to how different types of language information interact. When we tested DESS on standard datasets, it showed meaningful improvements over current methods, with F1-score increases of 4.85, 8.36, and 2.42 in identifying aspect opinion pairs and determining sentiment accurately. Looking deeper into the results, we found that DeBERTa's sophisticated attention system helps DESS handle complicated sentence structures better, especially when important words are far apart. Our findings suggest that upgrading to more advanced language models when thoughtfully integrated, can lead to real improvements in how well we can analyze sentiments in text. The implementation of our approach is publicly available at: https://github.com/VishalRepos/DESS.

AI advanced Natural Language Processing
By: Vishal Thenuwara, Nisansa de Silva
Source: arXiv Nov 13, 2025
0.0
10 min read
0
Quality
📄 paper

SPOT: Sparsification with Attention Dynamics via Token Relevance in Vision Transformers

While Vision Transformers (ViT) have demonstrated remarkable performance across diverse tasks, their computational demands are substantial, scaling quadratically with the number of processed tokens. Compact attention representations, reflecting token interaction distributions, can guide early detection and reduction of less salient tokens prior to attention computation. Motivated by this, we present SParsification with attentiOn dynamics via Token relevance (SPOT), a framework for early detection of redundant tokens within ViTs that leverages token embeddings, interactions, and attention dynamics across layers to infer token importance, resulting in a more context-aware and interpretable relevance detection process. SPOT informs token sparsification and facilitates the elimination of such tokens, improving computational efficiency without sacrificing performance. SPOT employs computationally lightweight predictors that can be plugged into various ViT architectures and learn to derive effective input-specific token prioritization across layers. Its versatile design supports a range of performance levels adaptable to varying resource constraints. Empirical evaluations demonstrate significant efficiency gains of up to 40% compared to standard ViTs, while maintaining or even improving accuracy. Code and models are available at https://github.com/odedsc/SPOT .

AI advanced Computer Vision
By: Oded Schlesinger, Amirhossein Farzam, J. Matias Di Martino +1 more
Source: arXiv Nov 13, 2025
0.0
5 min read
0
Quality
📄 paper

Dynamic Avatar-Scene Rendering from Human-centric Context

Reconstructing dynamic humans interacting with real-world environments from monocular videos is an important and challenging task. Despite considerable progress in 4D neural rendering, existing approaches either model dynamic scenes holistically or model scenes and backgrounds separately aim to introduce parametric human priors. However, these approaches either neglect distinct motion characteristics of various components in scene especially human, leading to incomplete reconstructions, or ignore the information exchange between the separately modeled components, resulting in spatial inconsistencies and visual artifacts at human-scene boundaries. To address this, we propose {\bf Separate-then-Map} (StM) strategy that introduces a dedicated information mapping mechanism to bridge separately defined and optimized models. Our method employs a shared transformation function for each Gaussian attribute to unify separately modeled components, enhancing computational efficiency by avoiding exhaustive pairwise interactions while ensuring spatial and visual coherence between humans and their surroundings. Extensive experiments on monocular video datasets demonstrate that StM significantly outperforms existing state-of-the-art methods in both visual quality and rendering accuracy, particularly at challenging human-scene interaction boundaries.

AI advanced Computer Vision
By: Wenqing Wang, Haosen Yang, Josef Kittler +1 more
Source: arXiv Nov 13, 2025
0.0
5 min read
0
Quality
📄 paper

OmniVGGT: Omni-Modality Driven Visual Geometry Grounded

General 3D foundation models have started to lead the trend of unifying diverse vision tasks, yet most assume RGB-only inputs and ignore readily available geometric cues (e.g., camera intrinsics, poses, and depth maps). To address this issue, we introduce OmniVGGT, a novel framework that can effectively benefit from an arbitrary number of auxiliary geometric modalities during both training and inference. In our framework, a GeoAdapter is proposed to encode depth and camera intrinsics/extrinsics into a spatial foundation model. It employs zero-initialized convolutions to progressively inject geometric information without disrupting the foundation model's representation space. This design ensures stable optimization with negligible overhead, maintaining inference speed comparable to VGGT even with multiple additional inputs. Additionally, a stochastic multimodal fusion regimen is proposed, which randomly samples modality subsets per instance during training. This enables an arbitrary number of modality inputs during testing and promotes learning robust spatial representations instead of overfitting to auxiliary cues. Comprehensive experiments on monocular/multi-view depth estimation, multi-view stereo, and camera pose estimation demonstrate that OmniVGGT outperforms prior methods with auxiliary inputs and achieves state-of-the-art results even with RGB-only input. To further highlight its practical utility, we integrated OmniVGGT into vision-language-action (VLA) models. The enhanced VLA model by OmniVGGT not only outperforms the vanilla point-cloud-based baseline on mainstream benchmarks, but also effectively leverages accessible auxiliary inputs to achieve consistent gains on robotic tasks.

AI advanced Computer Vision
By: Haosong Peng, Hao Li, Yalun Dai +8 more
Source: arXiv Nov 13, 2025
0.0
10 min read
0
Quality
📄 paper

From 2D to 3D Without Extra Baggage: Data-Efficient Cancer Detection in Digital Breast Tomosynthesis

Digital Breast Tomosynthesis (DBT) enhances finding visibility for breast cancer detection by providing volumetric information that reduces the impact of overlapping tissues; however, limited annotated data has constrained the development of deep learning models for DBT. To address data scarcity, existing methods attempt to reuse 2D full-field digital mammography (FFDM) models by either flattening DBT volumes or processing slices individually, thus discarding volumetric information. Alternatively, 3D reasoning approaches introduce complex architectures that require more DBT training data. Tackling these drawbacks, we propose M&M-3D, an architecture that enables learnable 3D reasoning while remaining parameter-free relative to its FFDM counterpart, M&M. M&M-3D constructs malignancy-guided 3D features, and 3D reasoning is learned through repeatedly mixing these 3D features with slice-level information. This is achieved by modifying operations in M&M without adding parameters, thus enabling direct weight transfer from FFDM. Extensive experiments show that M&M-3D surpasses 2D projection and 3D slice-based methods by 11-54% for localization and 3-10% for classification. Additionally, M&M-3D outperforms complex 3D reasoning variants by 20-47% for localization and 2-10% for classification in the low-data regime, while matching their performance in high-data regime. On the popular BCS-DBT benchmark, M&M-3D outperforms previous top baseline by 4% for classification and 10% for localization.

AI advanced Computer Vision
By: Yen Nhi Truong Vu, Dan Guo, Sripad Joshi +3 more
Source: arXiv Nov 13, 2025
0.0
10 min read
0
Quality
📄 paper

One Small Step in Latent, One Giant Leap for Pixels: Fast Latent Upscale Adapter for Your Diffusion Models

Diffusion models struggle to scale beyond their training resolutions, as direct high-resolution sampling is slow and costly, while post-hoc image super-resolution (ISR) introduces artifacts and additional latency by operating after decoding. We present the Latent Upscaler Adapter (LUA), a lightweight module that performs super-resolution directly on the generator's latent code before the final VAE decoding step. LUA integrates as a drop-in component, requiring no modifications to the base model or additional diffusion stages, and enables high-resolution synthesis through a single feed-forward pass in latent space. A shared Swin-style backbone with scale-specific pixel-shuffle heads supports 2x and 4x factors and remains compatible with image-space SR baselines, achieving comparable perceptual quality with nearly 3x lower decoding and upscaling time (adding only +0.42 s for 1024 px generation from 512 px, compared to 1.87 s for pixel-space SR using the same SwinIR architecture). Furthermore, LUA shows strong generalization across the latent spaces of different VAEs, making it easy to deploy without retraining from scratch for each new decoder. Extensive experiments demonstrate that LUA closely matches the fidelity of native high-resolution generation while offering a practical and efficient path to scalable, high-fidelity image synthesis in modern diffusion pipelines.

AI advanced Computer Vision
By: Aleksandr Razin, Danil Kazantsev, Ilya Makarov
Source: arXiv Nov 13, 2025
0.0
5 min read
0
Quality
📄 paper

Oya: Deep Learning for Accurate Global Precipitation Estimation

Accurate precipitation estimation is critical for hydrological applications, especially in the Global South where ground-based observation networks are sparse and forecasting skill is limited. Existing satellite-based precipitation products often rely on the longwave infrared channel alone or are calibrated with data that can introduce significant errors, particularly at sub-daily timescales. This study introduces Oya, a novel real-time precipitation retrieval algorithm utilizing the full spectrum of visible and infrared (VIS-IR) observations from geostationary (GEO) satellites. Oya employs a two-stage deep learning approach, combining two U-Net models: one for precipitation detection and another for quantitative precipitation estimation (QPE), to address the inherent data imbalance between rain and no-rain events. The models are trained using high-resolution GPM Combined Radar-Radiometer Algorithm (CORRA) v07 data as ground truth and pre-trained on IMERG-Final retrievals to enhance robustness and mitigate overfitting due to the limited temporal sampling of CORRA. By leveraging multiple GEO satellites, Oya achieves quasi-global coverage and demonstrates superior performance compared to existing competitive regional and global precipitation baselines, offering a promising pathway to improved precipitation monitoring and forecasting.

AI advanced Machine Learning
By: Emmanuel Asiedu Brempong, Mohammed Alewi Hassen, MohamedElfatih MohamedKhair +7 more
Source: arXiv Nov 13, 2025
0.0
5 min read
0
Quality